Inflatable Module Seal Interface Development and Testing

Completed Technology Project (2011 - 2012)

Project Introduction

Develop a repeatable low permeable sealing interface evaluating O-ring, RTV bond and flowed RTV bond methods. Advanced Bladder materials (ArmorFlex, Nanoclay, etc) were developed by ILC Dover in FY2011 and will be evaluated and tested. Cold flow and assembly process testing will be performed utilizing 6-in x 6-in and 6-in x 12-in test articles (Figure 1a and 1b). Leak testing will be performed utilizing a 4-foot diameter test fixture. Bladder materials to be tested include: ArmorFlex 101 (Polyurethane, gas barrier, polyurethane) ArmorFlex 101 w/ Nylon rip-stop NanoClay NanoClay w additional gas barrier layer Nanoclay w/ rip-stop CEPAC HD-200 (Bigelow bladder preferred embodiment)

Inflatable structures will require low permeable bladder to metallic seal interface. Cold flow of bladder materials over time is not acceptable for long term missions where materials cannot be easily inspected or replaced. Reliable seal interfaces are required. Inflatable habitats can provide the volume necessary for space colonization at a lower cost than traditional habitats. Sealing bladder materials capable of deploying at cold temperatures is essential for deep space missions and likely LOE missions due to operational constraints

Anticipated Benefits

Through development of this technology NASA will be able to design and fabricate a reliable seal interface in support of space missions, advise contractors of reliable sealing methods, and be a smart buyer of alternate methods developed by aerospace companies.

Project Image Inflatable Module Seal Interface Development and Testing

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	2
Organizational Responsibility	2
Project Management	2
Images	3
Links	3
Technology Maturity (TRL)	3
Technology Areas	3



Inflatable Module Seal Interface Development and Testing

Completed Technology Project (2011 - 2012)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
	Lead	NASA	Houston,
	Organization	Center	Texas
Langley Research	Supporting	NASA	Hampton,
Center(LaRC)	Organization	Center	Virginia

Primary	U.S.	Work	Locations
---------	------	------	-----------

Texas

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Johnson Space Center (JSC)

Responsible Program:

Center Innovation Fund: JSC CIF

Project Management

Program Director:

Michael R Lapointe

Program Manager:

Carlos H Westhelle

Project Manager:

Gerard D Valle

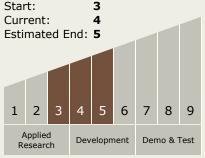
Principal Investigator:

Gerard D Valle

Inflatable Module Seal Interface Development and Testing

Completed Technology Project (2011 - 2012)

Images



12145-1377120352667.pngProject Image Inflatable Module
Seal Interface Development and
Testing
(https://techport.nasa.gov/image/2248)

Links

NTR 1 (no url provided)

Technology Areas

Primary:

- TX01 Propulsion Systems
 TX01.1 Chemical Space Propulsion
 - □ TX01.1.1 Integrated Systems and Ancillary Technologies

